Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver

With 3.6 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The 74VCX16245 is an advanced performance, non-inverting 16-bit transceiver. It is designed for very high-speed, very low-power operation in 1.8 V, 2.5 V or 3.3 V systems.

When operating at 2.5 V (or 1.8 V) the part is designed to tolerate voltages it may encounter on either inputs or outputs when interfacing to 3.3 V busses. It is guaranteed to be over–voltage tolerant to 3.6 V.

The VCX16245 is designed with byte control. It can be operated as two separate octals, or with the controls tied together, as a 16-bit wide function. The Transmit/Receive ($T/\overline{R}n$) inputs determine the direction of data flow through the bi-directional transceiver. Transmit (active–HIGH) enables data from A ports to B ports; Receive (active–LOW) enables data from B to A ports. The Output Enable inputs (\overline{OEn}), when HIGH, disable both A and B ports by placing them in a HIGH Z condition.

Features

- Designed for Low Voltage Operation: V_{CC} = 1.65–3.6 V
- 3.6 V Tolerant Inputs and Outputs
- High Speed Operation: 2.5 ns max for 3.0 to 3.6 V

3.0 ns max for 2.3 to 2.7 V 6.0 ns max for 1.65 to 1.95 V

• Static Drive: ±24 mA Drive at 3.0 V

±18 mA Drive at 2.3 V ±6 mA Drive at 1.65 V

- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 \text{ V}$
- Near Zero Static Supply Current in All Three Logic States (20 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds ±250 mA @ 125°C
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V
- Pb-Free Package is Available*

ON Semiconductor®

http://onsemi.com

TSSOP-48 DT SUFFIX CASE 1201

MARKING DIAGRAM

8

1

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
74VCX16245DT	TSSOP	39 / Rail
74VCX16245DTR	TSSOP	2500/Tape & Reel
74VCX16245DTRG	TSSOP (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

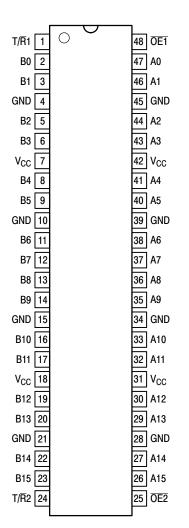


Figure 1. 48-Lead Pinout (Top View)

A2-А3-A4 A5 A6 A7 · A8-Α9 A10 A11 · A12 A13 29 A14 27 A15-

T/R1

OE2 24 T/R2

48 OE1

25

A0 47

46 A1

44

43

41

40

38

37

36

35

33

32

30

26

Figure 3. IEC Logic Diagram

PIN NAMES

Pins	Function
OEn	Output Enable Inputs
T/Rn	Transmit/Receive Inputs
A0-A15	Side A Inputs or 3–State Outputs
B0-B15	Side B Inputs or 3–State Outputs

T/R1 1 OET 48	T/R2 24 OE2 25
A0:7 B0:7	A8:15 One of Eight

Figure 2. Logic Diagram

2 B0

3 B1

5 B2

6 B3

9 B5

B4

В6

В7

13 B8

14 B9

16 B10

17 B11

19 B12

20 B13

22 B14 23 B15

8

11

12

1 ∇

2 ∇

3 ∇

4 ∇

EN1

EN2

EN3

EN4

Inp	uts	Outpute	Inp	outs	Outrote
OE1	T/R1	Outputs	OE2	T/R2	Outputs
L	L	Bus B0:7 Data to Bus A0:7	L	L	Bus B8:15 Data to Bus A8:15
L	Н	Bus A0:7 Data to Bus B0:7	L	Н	Bus A8:15 Data to Bus B8:15
Н	Х	High Z State on A0:7, B0:7	Н	Х	High Z State on A8:15, B8:15

H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +4.6$		V
Vo	DC Output Voltage	$-0.5 \le V_O \le +4.6$	Output in 3–State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.; Outputs Active	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Io	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.2	3.3 3.3	3.6 3.6	V
VI	Input Voltage		-0.3		3.6	V
V _O	Output Voltage	(Active State) (3-State)	0 0		V _{CC} 3.6	V
I _{OH}	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V				-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0V – 3.6V				24	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 2.3V – 2.7V				-18	mA
I _{OL}	LOW Level Output Current, V _{CC} = 2.3V - 2.7V				18	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 1.65 – 1.95V				-6	mA
I _{OL}	LOW Level Output Current, V _{CC} = 1.65 – 1.95V				6	mA
T _A	Operating Free-Air Temperature		-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V _{IN} from 0.8V to	2.0V, V _{CC} = 3.0V	0		10	ns/V

^{1.} I_O absolute maximum rating must be observed.

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°0	C to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	1.65V ≤ V _{CC} < 2.3V	0.65 x V _{CC}		V
		2.3V ≤ V _{CC} ≤ 2.7V	1.6		
		2.7V < V _{CC} ≤ 3.6V	2.0		
V _{IL}	LOW Level Input Voltage (Note 2.)	1.65V ≤ V _{CC} < 2.3V		0.35 x V _{CC}	V
		2.3V ≤ V _{CC} ≤ 2.7V		0.7	
		2.7V < V _{CC} ≤ 3.6V		0.8	
V _{OH}	HIGH Level Output Voltage	$1.65V \le V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} - 0.2		V
		V _{CC} = 1.65V; I _{OH} = -6mA	1.25		
		$V_{CC} = 2.3V; I_{OH} = -6mA$	2.0		
		V _{CC} = 2.3V; I _{OH} = -12mA	1.8		
		V _{CC} = 2.3V; I _{OH} = -18mA	1.7		
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		V _{CC} = 3.0V; I _{OH} = -18mA	2.4		
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2		
V _{OL}	LOW Level Output Voltage	$1.65V \le V_{CC} \le 3.6V; I_{OL} = 100\mu A$		0.2	V
		V _{CC} = 1.65V; I _{OL} = 6mA		0.3	
		$V_{CC} = 2.3V; I_{OL} = 12mA$		0.4	
		V _{CC} = 2.3V; I _{OL} = 18mA		0.6	
		$V_{CC} = 2.7V; I_{OL} = 12mA$		0.4	
		V _{CC} = 3.0V; I _{OL} = 18mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 24mA		0.55	
lı	Input Leakage Current	$1.65V \le V_{CC} \le 3.6V; \ 0V \le V_{I} \le 3.6V$		±5.0	μΑ
l _{OZ}	3-State Output Current	$1.65 \text{V} \leq \text{V}_{CC} \leq 3.6 \text{V}; \ 0 \text{V} \leq \text{V}_{O} \leq 3.6 \text{V}; \\ \text{V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}$		±10	μΑ
I _{OFF}	Power-Off Leakage Current	$V_{CC} = 0V$; V_I or $V_O = 3.6V$		10	μΑ
I _{CC}	Quiescent Supply Current (Note 3.)	$1.65V \le V_{CC} \le 3.6V$; $V_I = GND \text{ or } V_{CC}$		20	μΑ
		$1.65V \le V_{CC} \le 3.6V; 3.6V \le V_{I}, V_{O} \le 3.6V$		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.7V < V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		750	μΑ

- 2. These values of V_I are used to test DC electrical characteristics only.
- 3. Outputs disabled or 3-state only.

AC CHARACTERISTICS (Note 4.; $t_R = t_F = 2.0$ ns; $C_L = 30$ pF; $R_L = 500\Omega$)

					Lir	nits			
					T _A = -40°	C to +85°C			
			V _{CC} = 3.0	OV to 3.6V	V _{CC} = 2.3	3V to 2.7V	V _{CC} = 1.6	5 to1.95V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	0.8 0.8	2.5 2.5	1.0 1.0	3.0 3.0	1.5 1.5	6.0 6.0	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	0.8 0.8	3.8 3.8	1.0 1.0	4.9 4.9	1.5 1.5	9.3 9.3	ns
t _{PHZ}	Output Disable Time From High and Low Level	2	0.8 0.8	3.7 3.7	1.0 1.0	4.2 4.2	1.5 1.5	7.6 7.6	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 5.)			0.5 0.5		0.5 0.5		0.75 0.75	ns

 ^{4.} For C_L = 50pF, add approximately 300ps to the AC maximum specification.
 5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

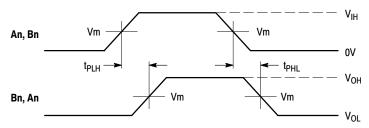
DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C	
Symbol	Characteristic	Condition	Тур	Unit
V _{OLP}	Dynamic LOW Peak Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	0.25	V
	(Note 6.)	$V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	0.6	
		$V_{CC} = 3.3V$, $C_L = 30pF$, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	0.8	
V_{OLV}	Dynamic LOW Valley Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.25	V
	(Note 6.)	$V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.6	
		$V_{CC} = 3.3V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.8	
V _{OHV}	Dynamic HIGH Valley Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	1.5	V
	(Note 7.)	$V_{CC} = 2.5V$, $C_L = 30pF$, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	1.9	
		$V_{CC} = 3.3V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	2.2	

^{6.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	Note 8.	6	pF
C _{OUT}	Output Capacitance	Note 8.	7	pF
C _{PD}	Power Dissipation Capacitance	Note 8., 10MHz	20	pF


^{8.} V_{CC} = 1.8, 2.5 or 3.3V; V_{I} = 0V or V_{CC} .

AC CHARACTERISTICS ($t_R = t_F = 2.0ns$; $C_L = 50pF$; $R_L = 500\Omega$)

			Limits				
				T _A = -40°C	C to +85°C		
			V _{CC} = 3.0	0V to 3.6V	V _{CC} :	= 2.7V	1
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	3	1.0 1.0	3.0 3.0		3.6 3.6	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	4	1.0 1.0	4.4 4.4		5.4 5.4	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	4	1.0 1.0	4.1 4.1		4.6 4.6	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 9.)			0.5 0.5		0.5 0.5	ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

^{7.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the HIGH state.

WAVEFORM 1 - PROPAGATION DELAYS

 t_R = t_F = 2.0ns, 10% to 90%; f = 1MHz; t_W = 500ns

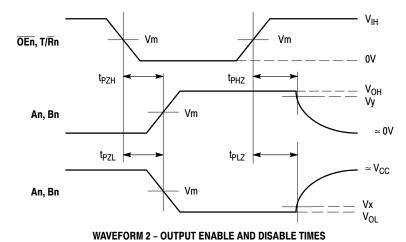
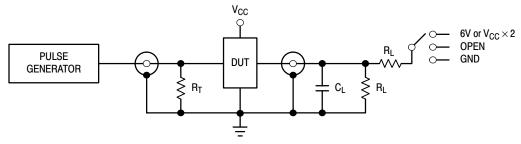
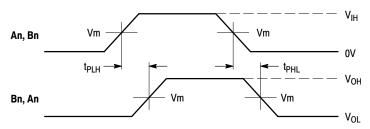



Figure 4. AC Waveforms

 $t_R = t_F = 2.0$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns

	V _{CC}					
Symbol	3.3V ±0.3V	2.5V ±0.2V	1.8V ±0.15V			
V _{IH}	2.7V	V _{CC}	V _{CC}			
V _m	1.5V	V _{CC} /2	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V			
V _y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V			



TEST	SWITCH	
t _{PLH} , t _{PHL}	Open	
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V$; 1.8V $\pm 0.15V$	
t _{PZH} , t _{PHZ}	GND	

 $C_L = 30$ pF or equivalent (Includes jig and probe capacitance)

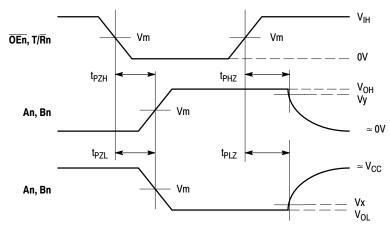
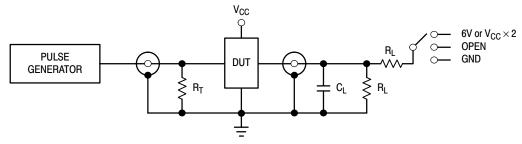

 $R_L = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

Figure 5. Test Circuit

WAVEFORM 3 - PROPAGATION DELAYS

 t_R = t_F = 2.0ns, 10% to 90%; f = 1MHz; t_W = 500ns



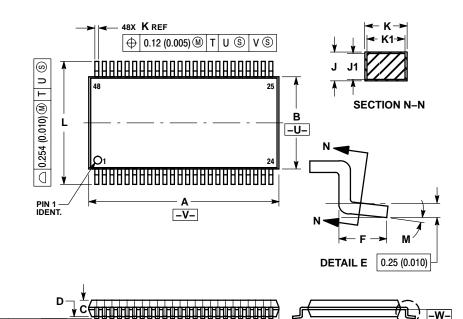
WAVEFORM 4 - OUTPUT ENABLE AND DISABLE TIMES

 $t_R = t_F = 2.0$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns

Figure 6. AC Waveforms

	V _{CC}		
Symbol	3.3V ±0.3V	2.7V	
V _{IH}	2.7V	2.7V	
V _m	1.5V	1.5V	
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	

TEST	SWITCH Open	
t _{PLH} , t _{PHL}		
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 ±0.3V; $V_{CC} \times$ 2 at V_{CC} = 2.5 ±0.2V; 1.8 ±0.15V	
t _{PZH} , t _{PHZ}	GND	


 $C_L = 50$ pF or equivalent (Includes jig and probe capacitance)

 $R_L = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

Figure 7. Test Circuit

PACKAGE DIMENSIONS

TSSOP DT SUFFIX CASE 1201-01 **ISSUE A**

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- T 14.5WI, 1962.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD FLASH, PROTRUSIONS OR GATE
 BURRS. MOLD FLASH OR GATE BURRS
- SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	12.40	12.60	0.488	0.496
В	6.00	6.20	0.236	0.244
С	-	1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.50 BSC		0.0197 BSC	
Н	0.37		0.015	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.17	0.27	0.007	0.011
K1	0.17	0.23	0.007	0.009
L	7.95	8.25	0.313	0.325
M	0 °	8°	0 °	8°

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

☐ 0.076 (0.003)

SEATING PLANE

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

DETAIL E

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative